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Martin Held*

Abstract

We investigate ways to extend offsetting based on skele-
tal structures beyond the well-known constant-radius
and mitered offsets supported by Voronoi diagrams and
straight skeletons for which the orthogonal distance of
offset elements to their input elements is uniform. We
introduce a new geometric structure called the variable-
radius Voronoi diagram, which supports the computa-
tion of variable-radius offsets, i.e., offsets whose distance
to the input may vary along the input.

1 Introduction

Offsetting is an important task in diverse applications
in the manufacturing business. For a set C in the
Euclidean plane, the constant-radius offset with offset
distance r is the set of all points of the plane whose
minimum distance from C' is exactly r. Formally, this
offset curve can be defined as the boundary of the set
Upec B(p,r), where B(p,r) denotes a disk with radius
r centered at the point p.

For polygons such an offset curve will consist of one
or more closed curves made up of line segments and cir-
cular arcs. Held [2] describes as algorithm using the
Voronoi diagram to compute such an offset efficiently
and reliably. Mitered offsets differ from constant-radius
offsets in the handling of non-convex vertices of an in-
put polygon: Instead of adding circular arcs to the offset
curve, the offset segments of the two edges incident to
a non-convex vertex get extended until they intersect.
This type of offset can be generated in linear time from
the straight skeleton [3]; see Figure 1. A common fea-
ture of these offsets is that the orthogonal distance of
each offset element from its defining contour element is
constant.

Several applications in industry, such as for garment
manufacture or shoe design, need to construct differ-
ently sized pieces from a single master design. The obvi-
ous method of scaling is not always desirable as it scales
all elements equally. An alternative is to use offsetting,
and a common practical requirement is creating non-
constant offsets, i.e., offset curves where the distance
of each point of the offset to the original input curve
changes along the input.
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Figure 1: The Voronoi-diagram (left) and the straight
skeleton (right) of a polygon enable efficient computa-
tion of constant-radius and mitered offsets (dashed).

Prior work on variable-distance offsets [4, 5, 6] seems
to concentrate on defining and comparing different off-
sets and is less concerned with robustly computing offset
curves.

2 Main ldea

Consider a planar straight-line graph S in the plane.
Let us denote by S C R? the set of points covered by
all vertices and line segments of S. Furthermore, we
consider a weight function o: S — R, that assigns to
each vertex p of S a positive weight o(p) and for each
point on a line segment pg of S we linearly interpolate
its weight along pg from o(p) at p to o(q) at q.

We now place a disk at each point p of S. In anal-
ogy to the so-called prairie fire model, all disks have
initially radius zero. As time increases, however, the ra-
dius of each disk grows proportional to the weight o(p)
of its center point p € S. The variable-radius offset for
a given time is the envelope of this set of disks. As
intended, input sites with small weight will induce an
offset that is closer to them, and input sites that were
assigned larger weights will cause their offsets to be far-
ther away. Formally, this offset is the boundary of the
set |J,e5 B(p,o(p) - t). Note that the term o(p) - ¢ re-
places the constant radius r of standard offsets.

Having used skeletal structures such as the Voronoi
diagram and the straight skeleton to construct constant-
radius and mitered offsets in the past, we are looking
for another Voronoi-like structure to facilitate the com-
putation of non-constant offsets. The variable-radius
Voronoi diagram introduced below and defined relative
to weighted points and variably-weighted line segments
is such a useful structure.

Preliminaries. The Voronoi diagram VD(S) of a set
S of points in the plane, called sites, tessellates the plane
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into interior-disjoint regions. Each Voronoi region be-
longs to exactly one site s and is the locus of all points
in the plane whose closest site is s.

We introduce the wariable-radius Voronoi diagram
VD, (S) as a generalized Voronoi diagram with gener-
alizations into two directions: First, the set S of in-
put sites is a planar straight-line graph, i.e., a set of
both vertices and non-intersecting line segments be-
tween pairs of these vertices. Second, we assign mul-
tiplicative weights to these sites. As described above,
vertices s € S are assigned positive weight o(s), and
the weight of a point on a line segment pg changes lin-
early between its endpoints from o(p) to o(q).

The distance of a point u in the plane to a vertex
site s is defined as the Euclidean distance from u to s,
divided by the weight of that site: d(u,s) := L=l
The distance of u to a line-segment site pq is naturally
defined as the minimum distance of u to any point of
the line segment: d(u,pq) := min,epg ”g&f;”.

As in the case of the standard Voronoi diagram, every
point in the plane is in the (generalized) Voronoi region
of the site that it is closest to. An arc that separates two
regions comprises all points that have the same distance
to two sites and a larger distance to all other sites.

The variable-radius Voronoi diagram inherits several
important properties from the multiplicatively weighted
Voronoi diagram of points. For instance, the region of
a given site need not be connected and bisectors be-
tween two vertices are circles or circular arcs [1]. Other
bisectors, however, are more complex curves in general.

The bisectors between a line segment pg and its two
incident vertices p and g exhibit an interesting property:
We can show that they are full circles whose diameters
on the line supporting pq are bounded by a common
point on one side and p and ¢, respectively, on the other;
see Figure 2, left.
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Figure 2: (Left) The variable-radius Voronoi diagram
(blue, dotted) of a line segment and its two incident
vertices. A family of offset curves is shown in green and
dashed.  (Right) The variable-radius Voronoi diagram
inside a polygonal input with weighted vertices.

Offsetting. While the bisectors of VD, (S) consist
also of non-trivial curves, it can be shown that the
variable-radius offset itself comprises line segments and
circular arcs only; see Figure 2, right.

We can compute the variable-radius offset of S for a
given time ¢ from the variable-radius Voronoi diagram
VD,(S). The approach is identical to how constant-
distance offsets are computed based on Voronoi dia-
grams or straight skeletons [2, 3]. Roughly, we iterate
through all the arcs of VD, (S) and add offset elements
in each face that contains points at distance ¢ - 0. The
topological information encoded in VD,(S) enables us
to do this in time linear in the size of the Voronoi di-
agram and in a single iteration, without the need to
compute all pair-wise self-intersections of offsets.

Construction. Similarly to the standard Voronoi di-
agram, the variable-radius Voronoi diagram can be ob-
tained from the lower envelope of surfaces in 3D. For
vertices, the corresponding surface in 3D is a cone whose
dihedral angle depends on the weight of the input ver-
tex. Input line segment induce ruled surfaces in 3D as
the offsets of line segments are also line segments. In
particular, the surfaces will be subsets of right conoids.

CGAL’s 3D envelope computation algorithm is
generic in the sense that it can deal with arbitrary ter-
rain surfaces so long as it has some means to learn
about certain geometric properties. We are working on
proof-of-concept code, based on CGAL, to compute the
variable-radius Voronoi diagram of planar straight-line
graphs and to compute variable-radius offsets.

3 Conclusion

We investigate one specific variant of a skeletal struc-
ture which we call the variable-radius Voronoi diagram.
While this structure is of particular interest in itself, we
demonstrate its applicability to robustly constructing
variable-radius offsets.

An open problem is to generalize the class of input
sites to include for instance circular arcs. We hope
that this would enable offsets that are G! continuous
for some class of inputs. However, note that the off-
set of a variable-weighted circular arc is not a circular
arc. Hence, a better understanding of the mathematical
characteristics of the resulting offsets and of the corre-
sponding Voronoi bisectors is required.
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